Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 19 Jan 2024]
Title:A novel method to compute the contact surface area between an organ and cancer tissue
View PDF HTML (experimental)Abstract:With "contact surface area" (CSA) we refers to the area of contact between a tumor and an organ. This indicator has been identified as a predictive factor for surgical peri-operative parameters, particularly in the context of kidney cancer. However, state-of-the-art algorithms for computing the CSA rely on assumptions about the tumor shape and require manual human annotation. In this study, we introduce an innovative method that relies on 3D reconstructions of tumors and organs to provide an accurate and objective estimate of the CSA. Our approach consists of a segmentation protocol for reconstructing organs and tumors from Computed Tomography (CT) images and an algorithm leveraging the reconstructed meshes to compute the CSA. With the aim to contributing to the literature with replicable results, we provide an open-source implementation of our algorithm, along with an easy-to-use graphical user interface to support its adoption and widespread use. We evaluated the accuracy of our method using both a synthetic dataset and reconstructions of 87 real tumor-organ pairs.
Submission history
From: Alessandra Bulanti [view email][v1] Fri, 19 Jan 2024 14:34:34 UTC (2,083 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.