Computer Science > Human-Computer Interaction
[Submitted on 28 Feb 2024]
Title:Not All the Same: Understanding and Informing Similarity Estimation in Tile-Based Video Games
View PDF HTML (experimental)Abstract:Similarity estimation is essential for many game AI applications, from the procedural generation of distinct assets to automated exploration with game-playing agents. While similarity metrics often substitute human evaluation, their alignment with our judgement is unclear. Consequently, the result of their application can fail human expectations, leading to e.g. unappreciated content or unbelievable agent behaviour. We alleviate this gap through a multi-factorial study of two tile-based games in two representations, where participants (N=456) judged the similarity of level triplets. Based on this data, we construct domain-specific perceptual spaces, encoding similarity-relevant attributes. We compare 12 metrics to these spaces and evaluate their approximation quality through several quantitative lenses. Moreover, we conduct a qualitative labelling study to identify the features underlying the human similarity judgement in this popular genre. Our findings inform the selection of existing metrics and highlight requirements for the design of new similarity metrics benefiting game development and research.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.