Computer Science > Machine Learning
[Submitted on 14 Mar 2024 (v1), last revised 11 Oct 2024 (this version, v3)]
Title:Hyperparameters in Continual Learning: A Reality Check
View PDF HTML (experimental)Abstract:Continual learning (CL) aims to train a model on a sequence of tasks (i.e., a CL scenario) while balancing the trade-off between plasticity (learning new tasks) and stability (retaining prior knowledge). The dominantly adopted conventional evaluation protocol for CL algorithms selects the best hyperparameters within a given scenario and then evaluates the algorithms using these hyperparameters in the same scenario. However, this protocol has significant shortcomings: it overestimates the CL capacity of algorithms and relies on unrealistic hyperparameter tuning, which is not feasible for real-world applications. From the fundamental principles of evaluation in machine learning, we argue that the evaluation of CL algorithms should focus on assessing the generalizability of their CL capacity to unseen scenarios. Based on this, we propose a revised two-phase evaluation protocol consisting of a hyperparameter tuning phase and an evaluation phase. Both phases share the same scenario configuration (e.g., number of tasks) but are generated from different datasets. Hyperparameters of CL algorithms are tuned in the first phase and applied in the second phase to evaluate the algorithms. We apply this protocol to class-incremental learning, both with and without pretrained models. Across more than 8,000 experiments, our results show that most state-of-the-art algorithms fail to replicate their reported performance, highlighting that their CL capacity has been significantly overestimated in the conventional evaluation protocol.
Submission history
From: Sungmin Cha [view email][v1] Thu, 14 Mar 2024 03:13:01 UTC (551 KB)
[v2] Thu, 15 Aug 2024 21:07:45 UTC (3,467 KB)
[v3] Fri, 11 Oct 2024 22:44:23 UTC (3,326 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.