Computer Science > Machine Learning
[Submitted on 15 Mar 2024]
Title:Benchmarking Zero-Shot Robustness of Multimodal Foundation Models: A Pilot Study
View PDF HTML (experimental)Abstract:Pre-training image representations from the raw text about images enables zero-shot vision transfer to downstream tasks. Through pre-training on millions of samples collected from the internet, multimodal foundation models, such as CLIP, produce state-of-the-art zero-shot results that often reach competitiveness with fully supervised methods without the need for task-specific training. Besides the encouraging performance on classification accuracy, it is reported that these models close the robustness gap by matching the performance of supervised models trained on ImageNet under natural distribution shift. Because robustness is critical to real-world applications, especially safety-critical ones, in this paper, we present a comprehensive evaluation based on a large-scale robustness benchmark covering 7 natural, 3 synthetic distribution shifts, and 11 adversarial attacks. We use CLIP as a pilot study. We show that CLIP leads to a significant robustness drop compared to supervised ImageNet models on our benchmark, especially under synthetic distribution shift and adversarial attacks. Furthermore, data overlap analysis suggests that the observed robustness under natural distribution shifts could be attributed, at least in part, to data overlap. In summary, our evaluation shows a comprehensive evaluation of robustness is necessary; and there is a significant need to improve the robustness of zero-shot multimodal models.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.