Computer Science > Robotics
[Submitted on 15 Mar 2024]
Title:Incentive-Compatible and Distributed Allocation for Robotic Service Provision Through Contract Theory
View PDF HTML (experimental)Abstract:Robot allocation plays an essential role in facilitating robotic service provision across various domains. Yet the increasing number of users and the uncertainties regarding the users' true service requirements have posed challenges for the service provider in effectively allocating service robots to users to meet their needs. In this work, we first propose a contract-based approach to enable incentive-compatible service selection so that the service provider can effectively reduce the user's service uncertainties for precise service provision. Then, we develop a distributed allocation algorithm that incorporates robot dynamics and collision avoidance to allocate service robots and address scalability concerns associated with increasing numbers of service robots and users. We conduct simulations in eight scenarios to validate our approach. Comparative analysis against the robust allocation paradigm and two alternative uncertainty reduction strategies demonstrates that our approach achieves better allocation efficiency and accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.