Computer Science > Information Theory
[Submitted on 18 Mar 2024]
Title:RIS-aided Single-frequency 3D Imaging by Exploiting Multi-view Image Correlations
View PDF HTML (experimental)Abstract:Retrieving range information in three-dimensional (3D) radio imaging is particularly challenging due to the limited communication bandwidth and pilot resources. To address this issue, we consider a reconfigurable intelligent surface (RIS)-aided uplink communication scenario, generating multiple measurements through RIS phase adjustment. This study successfully realizes 3D single-frequency imaging by exploiting the near-field multi-view image correlations deduced from user mobility. We first highlight the significance of considering anisotropy in multi-view image formation by investigating radar cross-section properties and diffraction resolution limits. We then propose a novel model for joint multi-view 3D imaging that incorporates occlusion effects and anisotropic scattering. These factors lead to slow image support variation and smooth coefficient evolution, which are mathematically modeled as Markov processes. Based on this model, we employ the Expectation Maximization-Turbo-Generalized Approximate Message Passing algorithm for joint multi-view single-frequency 3D imaging with limited measurements. Simulation results reveal the superiority of joint multi-view imaging in terms of enhanced imaging ranges, accuracies, and anisotropy characterization compared to single-view imaging. Combining adjacent observations for joint multi-view imaging enables a reduction in the measurement overhead by 80%.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.