Computer Science > Software Engineering
[Submitted on 18 Mar 2024 (v1), last revised 23 Feb 2025 (this version, v4)]
Title:Empirical Analysis on CI/CD Pipeline Evolution in Machine Learning Projects
View PDF HTML (experimental)Abstract:The growing popularity of machine learning (ML) and the integration of ML components with other software artifacts has led to the use of continuous integration and delivery (CI/CD) tools, such as Travis CI, GitHub Actions, etc. that enable faster integration and testing for ML projects. Such CI/CD configurations and services require synchronization during the life cycle of the projects. Several works discussed how CI/CD configuration and services change during their usage in traditional software systems. However, there is very limited knowledge of how CI/CD configuration and services change in ML projects.
To fill this knowledge gap, this work presents the first empirical analysis of how CI/CD configuration evolves for ML software systems. We manually analyzed 343 commits collected from 508 open-source ML projects to identify common CI/CD configuration change categories in ML projects and devised a taxonomy of 14 co-changes in CI/CD and ML components. Moreover, we developed a CI/CD configuration change clustering tool that identified frequent CI/CD configuration change patterns in 15,634 commits. Furthermore, we measured the expertise of ML developers who modify CI/CD configurations. Based on this analysis, we found that 61.8% of commits include a change to the build policy and minimal changes related to performance and maintainability compared to general open-source projects. Additionally, the co-evolution analysis identified that CI/CD configurations, in many cases, changed unnecessarily due to bad practices such as the direct inclusion of dependencies and a lack of usage of standardized testing frameworks. More practices were found through the change patterns analysis consisting of using deprecated settings and reliance on a generic build language. Finally, our developer's expertise analysis suggests that experienced developers are more inclined to modify CI/CD configurations.
Submission history
From: Dhia Elhaq Rzig [view email][v1] Mon, 18 Mar 2024 19:14:38 UTC (2,359 KB)
[v2] Wed, 20 Mar 2024 18:43:54 UTC (1,532 KB)
[v3] Thu, 4 Apr 2024 20:07:38 UTC (1,708 KB)
[v4] Sun, 23 Feb 2025 17:37:19 UTC (1,708 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.