Computer Science > Databases
[Submitted on 19 Mar 2024]
Title:Evaluating Datalog over Semirings: A Grounding-based Approach
View PDF HTML (experimental)Abstract:Datalog is a powerful yet elegant language that allows expressing recursive computation. Although Datalog evaluation has been extensively studied in the literature, so far, only loose upper bounds are known on how fast a Datalog program can be evaluated. In this work, we ask the following question: given a Datalog program over a naturally-ordered semiring $\sigma$, what is the tightest possible runtime? To this end, our main contribution is a general two-phase framework for analyzing the data complexity of Datalog over $\sigma$: first ground the program into an equivalent system of polynomial equations (i.e. grounding) and then find the least fixpoint of the grounding over $\sigma$. We present algorithms that use structure-aware query evaluation techniques to obtain the smallest possible groundings. Next, efficient algorithms for fixpoint evaluation are introduced over two classes of semirings: (1) finite-rank semirings and (2) absorptive semirings of total order. Combining both phases, we obtain state-of-the-art and new algorithmic results. Finally, we complement our results with a matching fine-grained lower bound.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.