Computer Science > Robotics
[Submitted on 19 Mar 2024 (v1), last revised 15 Oct 2024 (this version, v2)]
Title:LAP, Using Action Feasibility for Improved Uncertainty Alignment of Large Language Model Planners
View PDF HTML (experimental)Abstract:Large language models (LLMs) showcase many desirable traits for intelligent and helpful robots. However, they are also known to hallucinate predictions. This issue is exacerbated in robotics where LLM hallucinations may result in robots confidently executing plans that are contrary to user goals, relying more frequently on human assistance, or preventing the robot from asking for help at all. In this work, we present LAP, a novel approach for utilizing off-the-shelf LLMs, alongside a novel Action feasibility metric, in robotic Planners that minimize harmful hallucinations and human intervention. Our key finding is that calculating and leveraging a new metric, which we call A-Feasibility, a measure of whether a given action is possible and safe in the provided scene, helps to mitigate hallucinations in LLM predictions and better align the LLM's confidence measure with the probability of success. We specifically propose an A-Feasibility metric which both combines scene context and prompting a LLM to determine if a given action is possible and safe in the scene, using the LLM's response to compute the score. Through experiments in both simulation and the real world on tasks with a variety of ambiguities, we show that LAP significantly increases success rate and decreases the amount of human intervention required relative to prior art. For example, in our real-world testing paradigm, LAP decreases the human help rate of previous methods by over 33% at a success rate of 70%.
Submission history
From: James Mullen Jr [view email][v1] Tue, 19 Mar 2024 23:18:40 UTC (5,796 KB)
[v2] Tue, 15 Oct 2024 16:35:56 UTC (5,670 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.