Computer Science > Machine Learning
[Submitted on 18 Mar 2024 (v1), last revised 9 Dec 2024 (this version, v3)]
Title:Auditing Fairness under Unobserved Confounding
View PDFAbstract:Many definitions of fairness or inequity involve unobservable causal quantities that cannot be directly estimated without strong assumptions. For instance, it is particularly difficult to estimate notions of fairness that rely on hard-to-measure concepts such as risk (e.g., quantifying whether patients at the same risk level have equal probability of treatment, regardless of group membership). Such measurements of risk can be accurately obtained when no unobserved confounders have jointly influenced past decisions and outcomes. However, in the real world, this assumption rarely holds. In this paper, we show that, surprisingly, one can still compute meaningful bounds on treatment rates for high-risk individuals (i.e., conditional on their true, \textit{unobserved} negative outcome), even when entirely eliminating or relaxing the assumption that we observe all relevant risk factors used by decision makers. We use the fact that in many real-world settings (e.g., the release of a new treatment) we have data from prior to any allocation to derive unbiased estimates of risk. This result enables us to audit unfair outcomes of existing decision-making systems in a principled manner. We demonstrate the effectiveness of our framework with a real-world study of Paxlovid allocation, provably identifying that observed racial inequity cannot be explained by unobserved confounders of the same strength as important observed covariates.
Submission history
From: Yewon Byun [view email][v1] Mon, 18 Mar 2024 21:09:06 UTC (176 KB)
[v2] Thu, 25 Apr 2024 02:56:14 UTC (177 KB)
[v3] Mon, 9 Dec 2024 06:30:38 UTC (178 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.