Computer Science > Robotics
[Submitted on 22 Mar 2024]
Title:AV-Occupant Perceived Risk Model for Cut-In Scenarios with Empirical Evaluation
View PDF HTML (experimental)Abstract:Advancements in autonomous vehicle (AV) technologies necessitate precise estimation of perceived risk to enhance user comfort, acceptance and trust. This paper introduces a novel AV-Occupant Risk (AVOR) model designed for perceived risk estimation during AV cut-in scenarios. An empirical study is conducted with 18 participants with realistic cut-in scenarios. Two factors were investigated: scenario risk and scene population. 76% of subjective risk responses indicate an increase in perceived risk at cut-in initiation. The existing perceived risk model did not capture this critical phenomenon. Our AVOR model demonstrated a significant improvement in estimating perceived risk during the early stages of cut-ins, especially for the high-risk scenario, enhancing modelling accuracy by up to 54%. The concept of the AVOR model can quantify perceived risk in other diverse driving contexts characterized by dynamic uncertainties, enhancing the reliability and human-centred focus of AV systems.
Submission history
From: Sarah Barendswaard [view email][v1] Fri, 22 Mar 2024 12:48:00 UTC (3,287 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.