Computer Science > Machine Learning
[Submitted on 25 Mar 2024]
Title:SCOD: From Heuristics to Theory
View PDF HTML (experimental)Abstract:This paper addresses the problem of designing reliable prediction models that abstain from predictions when faced with uncertain or out-of-distribution samples - a recently proposed problem known as Selective Classification in the presence of Out-of-Distribution data (SCOD). We make three key contributions to SCOD. Firstly, we demonstrate that the optimal SCOD strategy involves a Bayes classifier for in-distribution (ID) data and a selector represented as a stochastic linear classifier in a 2D space, using i) the conditional risk of the ID classifier, and ii) the likelihood ratio of ID and out-of-distribution (OOD) data as input. This contrasts with suboptimal strategies from current OOD detection methods and the Softmax Information Retaining Combination (SIRC), specifically developed for SCOD. Secondly, we establish that in a distribution-free setting, the SCOD problem is not Probably Approximately Correct learnable when relying solely on an ID data sample. Third, we introduce POSCOD, a simple method for learning a plugin estimate of the optimal SCOD strategy from both an ID data sample and an unlabeled mixture of ID and OOD data. Our empirical results confirm the theoretical findings and demonstrate that our proposed method, POSCOD, out performs existing OOD methods in effectively addressing the SCOD problem.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.