Computer Science > Software Engineering
[Submitted on 2 Apr 2024]
Title:Keeping Behavioral Programs Alive: Specifying and Executing Liveness Requirements
View PDF HTML (experimental)Abstract:One of the benefits of using executable specifications such as Behavioral Programming (BP) is the ability to align the system implementation with its requirements. This is facilitated in BP by a protocol that allows independent implementation modules that specify what the system may, must, and must not do. By that, each module can enforce a single system requirement, including negative specifications such as "don't do X after Y." The existing BP protocol, however, allows only the enforcement of safety requirements and does not support the execution of liveness properties such as "do X at least three times." To model liveness requirements in BP directly and independently, we propose idioms for tagging states with "must-finish," indicating that tasks are yet to be completed. We show that this idiom allows a direct specification of known requirements patterns from the literature. We also offer semantics and two execution mechanisms, one based on a translation to Büchi automata and the other based on a Markov decision process (MDP). The latter approach offers the possibility of utilizing deep reinforcement learning (DRL) algorithms, which bear the potential to handle large software systems effectively. This paper presents a qualitative and quantitative assessment of the proposed approach using a proof-of-concept tool. A formal analysis of the MDP-based execution mechanism is given in an appendix.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.