Computer Science > Other Computer Science
[Submitted on 22 Feb 2024]
Title:LoS Sensing-based Channel Estimation in UAV-Assisted OFDM Systems
View PDF HTML (experimental)Abstract:In unmanned aerial vehicle (UAV)-assisted orthogonal frequency division multiplexing (OFDM) systems, the potential advantage of the line-of-sight (LoS) path, characterized by its high probability of existence, has not been fully harnessed, thereby impeding the improvement of channel estimation (CE) accuracy. Inspired by the ideas of integrated sensing and communication (ISAC), this letter develops a LoS sensing method aimed at detecting the presence of LoS path. Leveraging the prior information obtained from LoS path detection, the detection thresholds for resolvable paths are proposed for LoS and Non-LoS (NLoS) scenarios, respectively. By employing these specifically designed detection thresholds, denoising processing is applied to classical least square (LS) CE, thereby improving the CE accuracy. Simulation results validate the effectiveness of the proposed method in enhancing CE accuracy and demonstrate its robustness against parameter variations.
Current browse context:
cs.OH
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.