Computer Science > Programming Languages
[Submitted on 9 Apr 2024]
Title:Mechanised Hypersafety Proofs about Structured Data: Extended Version
View PDFAbstract:Arrays are a fundamental abstraction to represent collections of data. It is often possible to exploit structural properties of the data stored in an array (e.g., repetition or sparsity) to develop a specialised representation optimised for space efficiency. Formally reasoning about correctness of manipulations with such structured data is challenging, as they are often composed of multiple loops with non-trivial invariants.
In this work, we observe that specifications for structured data manipulations can be phrased as hypersafety properties, i.e., predicates that relate traces of $k$ programs. To turn this observation into an effective verification methodology, we developed the Logic for Graceful Tensor Manipulation (LGTM), a new Hoare-style relational separation logic for specifying and verifying computations over structured data. The key enabling idea of LGTM is that of parametrised hypersafety specifications that allow the number $k$ of the program components to depend on the program variables. We implemented LGTM as a foundational embedding into Coq, mechanising its rules, meta-theory, and the proof of soundness. Furthermore, we developed a library of domain-specific tactics that automate computer-aided hypersafety reasoning, resulting in pleasantly short proof scripts that enjoy a high degree of reuse. We argue for the effectiveness of relational reasoning about structured data in LGTM by specifying and mechanically proving correctness of 13 case studies including computations on compressed arrays and efficient operations over multiple kinds of sparse tensors.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.