Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Apr 2024 (v1), last revised 18 Jun 2024 (this version, v3)]
Title:The Effectiveness of a Simplified Model Structure for Crowd Counting
View PDF HTML (experimental)Abstract:In the field of crowd counting research, many recent deep learning based methods have demonstrated robust capabilities for accurately estimating crowd sizes. However, the enhancement in their performance often arises from an increase in the complexity of the model structure. This paper discusses how to construct high-performance crowd counting models using only simple structures. We proposes the Fuss-Free Network (FFNet) that is characterized by its simple and efficieny structure, consisting of only a backbone network and a multi-scale feature fusion structure. The multi-scale feature fusion structure is a simple structure consisting of three branches, each only equipped with a focus transition module, and combines the features from these branches through the concatenation operation. Our proposed crowd counting model is trained and evaluated on four widely used public datasets, and it achieves accuracy that is comparable to that of existing complex models. Furthermore, we conduct a comprehensive evaluation by replacing the existing backbones of various models such as FFNet and CCTrans with different networks, including MobileNet-v3, ConvNeXt-Tiny, and Swin-Transformer-Small. The experimental results further indicate that excellent crowd counting performance can be achieved with the simplied structure proposed by us.
Submission history
From: Lei Chen [view email][v1] Thu, 11 Apr 2024 15:42:53 UTC (1,989 KB)
[v2] Mon, 3 Jun 2024 04:02:52 UTC (12,836 KB)
[v3] Tue, 18 Jun 2024 13:16:55 UTC (12,835 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.