Computer Science > Robotics
[Submitted on 22 Apr 2024]
Title:From Rigid to Soft Robotic Approaches for Minimally Invasive Neurosurgery
View PDF HTML (experimental)Abstract:Robotic assistance has significantly improved the outcomes of open microsurgery and rigid endoscopic surgery, however is yet to make an impact in flexible endoscopic neurosurgery. Some of the most common intracranial procedures for treatment of hydrocephalus and tumors stand to benefit from increased dexterity and reduced invasiveness offered by robotic systems that can navigate in the deep ventricular system of the brain. We review a spectrum of flexible robotic devices, from the traditional highly actuated approach, to more novel and bio-inspired mechanisms for safe navigation. For each technology, we identify the operating principle and are able to evaluate the potential for minimally invasive surgical applications. Overall, rigid-type continuum robots have seen the most development, however, approaches combining rigid and soft robotic principles into innovative devices, are ideally situated to address safety and complexity limitations after future design evolution. We also observe a number of related challenges in the field, from surgeon-robot interfaces to robot evaluation procedures. Fundamentally, the challenges revolve around a guarantee of safety in robotic devices with the prerequisites to assist and improve upon surgical tasks. With innovative designs, materials and evaluation techniques emerging, we see potential impacts in the next 5--10 years.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.