Computer Science > Computer Science and Game Theory
[Submitted on 22 Apr 2024]
Title:Metric Distortion under Group-Fair Objectives
View PDF HTML (experimental)Abstract:We consider a voting problem in which a set of agents have metric preferences over a set of alternatives, and are also partitioned into disjoint groups. Given information about the preferences of the agents and their groups, our goal is to decide an alternative to approximately minimize an objective function that takes the groups of agents into account. We consider two natural group-fair objectives known as Max-of-Avg and Avg-of-Max which are different combinations of the max and the average cost in and out of the groups. We show tight bounds on the best possible distortion that can be achieved by various classes of mechanisms depending on the amount of information they have access to. In particular, we consider group-oblivious full-information mechanisms that do not know the groups but have access to the exact distances between agents and alternatives in the metric space, group-oblivious ordinal-information mechanisms that again do not know the groups but are given the ordinal preferences of the agents, and group-aware mechanisms that have full knowledge of the structure of the agent groups and also ordinal information about the metric space.
Submission history
From: Alexandros A. Voudouris [view email][v1] Mon, 22 Apr 2024 13:54:17 UTC (20 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.