Computer Science > Cryptography and Security
[Submitted on 24 Apr 2024]
Title:A Game-Theoretic Analysis of Auditing Differentially Private Algorithms with Epistemically Disparate Herd
View PDF HTML (experimental)Abstract:Privacy-preserving AI algorithms are widely adopted in various domains, but the lack of transparency might pose accountability issues. While auditing algorithms can address this issue, machine-based audit approaches are often costly and time-consuming. Herd audit, on the other hand, offers an alternative solution by harnessing collective intelligence. Nevertheless, the presence of epistemic disparity among auditors, resulting in varying levels of expertise and access to knowledge, may impact audit performance. An effective herd audit will establish a credible accountability threat for algorithm developers, incentivizing them to uphold their claims. In this study, our objective is to develop a systematic framework that examines the impact of herd audits on algorithm developers using the Stackelberg game approach. The optimal strategy for auditors emphasizes the importance of easy access to relevant information, as it increases the auditors' confidence in the audit process. Similarly, the optimal choice for developers suggests that herd audit is viable when auditors face lower costs in acquiring knowledge. By enhancing transparency and accountability, herd audit contributes to the responsible development of privacy-preserving algorithms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.