Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Apr 2024]
Title:Multimodal Semantic-Aware Automatic Colorization with Diffusion Prior
View PDF HTML (experimental)Abstract:Colorizing grayscale images offers an engaging visual experience. Existing automatic colorization methods often fail to generate satisfactory results due to incorrect semantic colors and unsaturated colors. In this work, we propose an automatic colorization pipeline to overcome these challenges. We leverage the extraordinary generative ability of the diffusion prior to synthesize color with plausible semantics. To overcome the artifacts introduced by the diffusion prior, we apply the luminance conditional guidance. Moreover, we adopt multimodal high-level semantic priors to help the model understand the image content and deliver saturated colors. Besides, a luminance-aware decoder is designed to restore details and enhance overall visual quality. The proposed pipeline synthesizes saturated colors while maintaining plausible semantics. Experiments indicate that our proposed method considers both diversity and fidelity, surpassing previous methods in terms of perceptual realism and gain most human preference.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.