Computer Science > Machine Learning
[Submitted on 2 May 2024]
Title:Recovering Labels from Local Updates in Federated Learning
View PDF HTML (experimental)Abstract:Gradient inversion (GI) attacks present a threat to the privacy of clients in federated learning (FL) by aiming to enable reconstruction of the clients' data from communicated model updates. A number of such techniques attempts to accelerate data recovery by first reconstructing labels of the samples used in local training. However, existing label extraction methods make strong assumptions that typically do not hold in realistic FL settings. In this paper we present a novel label recovery scheme, Recovering Labels from Local Updates (RLU), which provides near-perfect accuracy when attacking untrained (most vulnerable) models. More significantly, RLU achieves high performance even in realistic real-world settings where the clients in an FL system run multiple local epochs, train on heterogeneous data, and deploy various optimizers to minimize different objective functions. Specifically, RLU estimates labels by solving a least-square problem that emerges from the analysis of the correlation between labels of the data points used in a training round and the resulting update of the output layer. The experimental results on several datasets, architectures, and data heterogeneity scenarios demonstrate that the proposed method consistently outperforms existing baselines, and helps improve quality of the reconstructed images in GI attacks in terms of both PSNR and LPIPS.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.