Condensed Matter > Materials Science
[Submitted on 13 May 2024]
Title:Untangling individual cation roles in rock salt high-entropy oxides
View PDFAbstract:We unravel the distinct roles each cation plays in phase evolution, stability, and properties within Mg1/5Co1/5Ni1/5Cu1/5Zn1/5O high-entropy oxide (HEO) by integrating experimental findings, thermodynamic analyses, and first-principles predictions. Our approach is through sequentially removing one cation at a time from the five-component high-entropy oxide to create five four-component derivatives. Bulk synthesis experiments indicate that Mg, Ni, and Co act as rock salt phase stabilizers whereas only Mg and Ni enthalpically enhance single-phase rock salt stability in thin film growth; synthesis conditions dictate whether Co is a rock salt phase stabilizer or destabilizer. By examining the competing phases and oxidation state preferences using pseudo-binary phase diagrams and first-principles calculations, we resolve the stability differences between bulk and thin film for all compositions. We systematically explore HEO macroscopic property sensitivity to cation selection employing both predicted and measured optical spectra. This study establishes a framework for understanding high-entropy oxide synthesizability and properties on a per-cation basis that is broadly applicable to tailoring functional property design in other high-entropy materials.
Submission history
From: Saeed Almishal Mr. [view email][v1] Mon, 13 May 2024 16:49:55 UTC (2,605 KB)
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.