Computer Science > Formal Languages and Automata Theory
[Submitted on 16 May 2024 (v1), last revised 20 Jun 2024 (this version, v2)]
Title:Verifying Unboundedness via Amalgamation
View PDFAbstract:Well-structured transition systems (WSTS) are an abstract family of systems that encompasses a vast landscape of infinite-state systems. By requiring a well-quasi-ordering (wqo) on the set of states, a WSTS enables generic algorithms for classic verification tasks such as coverability and termination. However, even for systems that are WSTS like vector addition systems (VAS), the framework is notoriously ill-equipped to analyse reachability (as opposed to coverability). Moreover, some important types of infinite-state systems fall out of WSTS' scope entirely, such as pushdown systems (PDS).
Inspired by recent algorithmic techniques on VAS, we propose an abstract notion of systems where the set of runs is equipped with a wqo and supports amalgamation of runs. We show that it subsumes a large class of infinite-state systems, including (reachability languages of) VAS and PDS, and even all systems from the abstract framework of valence systems, except for those already known to be Turing-complete.
Moreover, this abstract setting enables simple and general algorithmic solutions to unboundedness problems, which have received much attention in recent years. We present algorithms for the (i) simultaneous unboundedness problem (which implies computability of downward closures and decidability of separability by piecewise testable languages), (ii) computing priority downward closures, (iii) deciding whether a language is bounded, meaning included in $w_1^*\cdots w_k^*$ for some words $w_1,\ldots,w_k$, and (iv) effective regularity of unary languages. This leads to either drastically simpler proofs or new decidability results for a rich variety of systems.
Submission history
From: Lia Schütze [view email][v1] Thu, 16 May 2024 17:52:26 UTC (157 KB)
[v2] Thu, 20 Jun 2024 14:20:39 UTC (159 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.