Astrophysics > Earth and Planetary Astrophysics
[Submitted on 16 May 2024]
Title:Wide Binary Orbits are Preferentially Aligned with the Orbits of Small Planets, but Probably Not Hot Jupiters
View PDF HTML (experimental)Abstract:Studying the relative orientations of the orbits of exoplanets and wide-orbiting binary companions (semimajor axis greater than 100 AU) can shed light on how planets form and evolve in binary systems. Previous observations by multiple groups discovered a possible alignment between the orbits of visual binaries and the exoplanets that reside in them. In this study, using data from \textit{Gaia} DR3 and TESS, we confirm the existence of an alignment between the orbits of small planets $(R<6 R_\oplus)$ and binary systems with semimajor axes below 700 AU ($p=10^{-6}$). However, we find no statistical evidence for alignment between planet and binary orbits for binary semimajor axes greater than 700 AU, and no evidence for alignment of large, closely-orbiting planets (mostly hot Jupiters) and binaries at any separation. The lack of orbital alignment between our large planet sample and their binary companions appears significantly different from our small planet sample, even taking into account selection effects. Therefore, we conclude that any alignment between wide-binaries and our sample of large planets (predominantly hot Jupiters) is probably not as strong as what we observe for small planets in binaries with semimajor axes less than 700 AU. The difference in the alignment distribution of hot Jupiters and smaller planets may be attributed to the unique evolutionary mechanisms occuring in systems that form hot Jupiters, including potentially destabilizing secular resonances that onset as the protoplanetary disk dissipates and high-eccentricity migration occurring after the disk is gone.
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.