Computer Science > Human-Computer Interaction
[Submitted on 20 May 2024]
Title:Digital Health and Indoor Air Quality: An IoT-Driven Human-Centred Visualisation Platform for Behavioural Change and Technology Acceptance
View PDFAbstract:The detrimental effects of air pollutants on human health have prompted increasing concerns regarding indoor air quality (IAQ). The emergence of digital health interventions and citizen science initiatives has provided new avenues for raising awareness, improving IAQ, and promoting behavioural changes. The Technology Acceptance Model (TAM) offers a theoretical framework to understand user acceptance and adoption of IAQ technology. This paper presents a case study using the COM-B model and Internet of Things (IoT) technology to design a human-centred digital visualisation platform, leading to behavioural changes and improved IAQ. The study also investigates users' acceptance and adoption of the technology, focusing on their experiences, expectations, and the impact on IAQ. Integrating IAQ sensing, digital health-related interventions, citizen science, and the TAM model offers opportunities to address IAQ challenges, enhance public health, and foster sustainable indoor environments. The analytical results show that factors such as human behaviour, indoor activities, and awareness play crucial roles in shaping IAQ.
Submission history
From: Rameezraja Kureshi Dr [view email][v1] Mon, 20 May 2024 15:13:25 UTC (608 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.