Computer Science > Computation and Language
[Submitted on 21 May 2024]
Title:Atomic Self-Consistency for Better Long Form Generations
View PDF HTML (experimental)Abstract:Recent work has aimed to improve LLM generations by filtering out hallucinations, thereby improving the precision of the information in responses. Correctness of a long-form response, however, also depends on the recall of multiple pieces of information relevant to the question. In this paper, we introduce Atomic Self-Consistency (ASC), a technique for improving the recall of relevant information in an LLM response. ASC follows recent work, Universal Self-Consistency (USC) in using multiple stochastic samples from an LLM to improve the long-form response. Unlike USC which only focuses on selecting the best single generation, ASC picks authentic subparts from the samples and merges them into a superior composite answer. Through extensive experiments and ablations, we show that merging relevant subparts of multiple samples performs significantly better than picking a single sample. ASC demonstrates significant gains over USC on multiple factoids and open-ended QA datasets - ASQA, QAMPARI, QUEST, ELI5 with ChatGPT and Llama2. Our analysis also reveals untapped potential for enhancing long-form generations using approach of merging multiple samples.
Submission history
From: Raghuveer Thirukovalluru [view email][v1] Tue, 21 May 2024 18:05:44 UTC (836 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.