Computer Science > Machine Learning
[Submitted on 22 May 2024]
Title:VAE-Var: Variational-Autoencoder-Enhanced Variational Assimilation
View PDF HTML (experimental)Abstract:Data assimilation refers to a set of algorithms designed to compute the optimal estimate of a system's state by refining the prior prediction (known as background states) using observed data. Variational assimilation methods rely on the maximum likelihood approach to formulate a variational cost, with the optimal state estimate derived by minimizing this cost. Although traditional variational methods have achieved great success and have been widely used in many numerical weather prediction centers, they generally assume Gaussian errors in the background states, which limits the accuracy of these algorithms due to the inherent inaccuracies of this assumption. In this paper, we introduce VAE-Var, a novel variational algorithm that leverages a variational autoencoder (VAE) to model a non-Gaussian estimate of the background error distribution. We theoretically derive the variational cost under the VAE estimation and present the general formulation of VAE-Var; we implement VAE-Var on low-dimensional chaotic systems and demonstrate through experimental results that VAE-Var consistently outperforms traditional variational assimilation methods in terms of accuracy across various observational settings.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.