Computer Science > Machine Learning
[Submitted on 24 May 2024]
Title:A Counterfactual Analysis of the Dishonest Casino
View PDF HTML (experimental)Abstract:The dishonest casino is a well-known hidden Markov model (HMM) used in educational settings to introduce HMMs and graphical models. Here, a sequence of die rolls is observed, with the casino switching between a fair and a loaded die. Typically, the goal is to use the observed rolls to infer the pattern of fair and loaded dice, leading to filtering, smoothing, and Viterbi algorithms. This paper, however, explores how much of the winnings is attributable to the casino's cheating, a counterfactual question beyond the scope of HMM primitives. To address this, we introduce a structural causal model (SCM) consistent with the HMM and show that the expected winnings attributable to cheating (EWAC) can be bounded using linear programs (LPs). Through numerical experiments, we compute these bounds and develop intuition using benchmark SCMs based on independence, comonotonic, and counter-monotonic copulas. We show that tighter bounds are obtained with a time-homogeneity condition on the SCM, while looser bounds allow for an almost explicit LP solution. Domain-specific knowledge like pathwise monotonicity or counterfactual stability can be incorporated via linear constraints. Our work contributes to bounding counterfactuals in causal inference and is the first to develop LP bounds in a dynamic HMM setting, benefiting educational contexts where counterfactual inference is taught.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.