Mathematics > Combinatorics
[Submitted on 24 May 2024 (v1), last revised 6 Jul 2024 (this version, v3)]
Title:Planar Cycle-Extendable Graphs
View PDFAbstract:For most problems pertaining to perfect matchings, one may restrict attention to matching covered graphs -- that is, connected nontrivial graphs with the property that each edge belongs to some perfect matching. There is extensive literature on these graphs that are also known as $1$-extendable graphs (since each edge extends to a perfect matching) including an ear decomposition theorem due to Lovasz and Plummer.
A cycle $C$ of a graph $G$ is conformal if $G-V(C)$ has a perfect matching; such cycles play an important role in the study of perfect matchings, especially when investigating the Pfaffian orientation problem. A matching covered graph $G$ is cycle-extendable if -- for each even cycle $C$ -- the cycle $C$ is conformal, or equivalently, each perfect matching of $C$ extends to a perfect matching of $G$, or equivalently, $C$ is the symmetric difference of two perfect matchings of $G$, or equivalently, $C$ extends to an ear decomposition of $G$. In the literature, these are also known as cycle-nice or as $1$-cycle resonant graphs.
Zhang, Wang, Yuan, Ng and Cheng [Discrete Mathematics, 345:7 (2022), 112876] provided a characterization of claw-free cycle-extendable graphs. Guo and Zhang [Discrete Mathematics, 275:1-3 (2004), 151-164] and independently Zhang and Li [Discrete Applied Mathematics, 160:13-14 (2012), 2069-2074], provided characterizations of bipartite planar cycle-extendable graphs. In this paper, we establish a characterization of all planar cycle-extendable graphs -- in terms of $K_2$ and four infinite families.
Submission history
From: Nishad Kothari [view email][v1] Fri, 24 May 2024 10:27:04 UTC (43 KB)
[v2] Thu, 27 Jun 2024 17:46:34 UTC (49 KB)
[v3] Sat, 6 Jul 2024 13:26:38 UTC (48 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.