Statistics > Machine Learning
[Submitted on 24 May 2024 (v1), last revised 22 Oct 2024 (this version, v2)]
Title:Encoder Embedding for General Graph and Node Classification
View PDF HTML (experimental)Abstract:Graph encoder embedding, a recent technique for graph data, offers speed and scalability in producing vertex-level representations from binary graphs. In this paper, we extend the applicability of this method to a general graph model, which includes weighted graphs, distance matrices, and kernel matrices. We prove that the encoder embedding satisfies the law of large numbers and the central limit theorem on a per-observation basis. Under certain condition, it achieves asymptotic normality on a per-class basis, enabling optimal classification through discriminant analysis. These theoretical findings are validated through a series of experiments involving weighted graphs, as well as text and image data transformed into general graph representations using appropriate distance metrics.
Submission history
From: Cencheng Shen [view email][v1] Fri, 24 May 2024 11:51:08 UTC (827 KB)
[v2] Tue, 22 Oct 2024 22:48:15 UTC (842 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.