Computer Science > Multiagent Systems
[Submitted on 24 May 2024 (v1), last revised 2 Oct 2024 (this version, v3)]
Title:Finite-time convergence to an $ε$-efficient Nash equilibrium in potential games
View PDF HTML (experimental)Abstract:This paper investigates the convergence time of log-linear learning to an $\epsilon$-efficient Nash equilibrium (NE) in potential games. In such games, an efficient NE is defined as the maximizer of the potential function. Previous literature provides asymptotic convergence rates to efficient Nash equilibria, and existing finite-time rates are limited to potential games with further assumptions such as the interchangeability of players. In this paper, we prove the first finite-time convergence to an $\epsilon$-efficient NE in general potential games. Our bounds depend polynomially on $1/\epsilon$, an improvement over previous bounds that are exponential in $1/\epsilon$ and only hold for subclasses of potential games. We then strengthen our convergence result in two directions: first, we show that a variant of log-linear learning that requires a factor $A$ less feedback on the utility per round enjoys a similar convergence time; second, we demonstrate the robustness of our convergence guarantee if log-linear learning is subject to small perturbations such as alterations in the learning rule or noise-corrupted utilities.
Submission history
From: Anna Maddux [view email][v1] Fri, 24 May 2024 12:34:32 UTC (44 KB)
[v2] Mon, 17 Jun 2024 15:51:04 UTC (44 KB)
[v3] Wed, 2 Oct 2024 16:38:10 UTC (299 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.