Computer Science > Robotics
[Submitted on 13 Mar 2024 (v1), last revised 24 Jul 2024 (this version, v2)]
Title:Adaptive Splitting of Reusable Temporal Monitors for Rare Traffic Violations
View PDF HTML (experimental)Abstract:Autonomous Vehicles (AVs) are often tested in simulation to estimate the probability they will violate safety specifications. Two common issues arise when using existing techniques to produce this estimation: If violations occur rarely, simple Monte-Carlo sampling techniques can fail to produce efficient estimates; if simulation horizons are too long, importance sampling techniques (which learn proposal distributions from past simulations) can fail to converge. This paper addresses both issues by interleaving rare-event sampling techniques with online specification monitoring algorithms. We use adaptive multi-level splitting to decompose simulations into partial trajectories, then calculate the distance of those partial trajectories to failure by leveraging robustness metrics from Signal Temporal Logic (STL). By caching those partial robustness metric values, we can efficiently re-use computations across multiple sampling stages. Our experiments on an interstate lane-change scenario show our method is viable for testing simulated AV-pipelines, efficiently estimating failure probabilities for STL specifications based on real traffic rules. We produce better estimates than Monte-Carlo and importance sampling in fewer simulations.
Submission history
From: Craig Innes [view email][v1] Wed, 13 Mar 2024 17:47:39 UTC (415 KB)
[v2] Wed, 24 Jul 2024 12:56:41 UTC (580 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.