Computer Science > Multiagent Systems
[Submitted on 30 May 2024]
Title:Safe Multi-agent Reinforcement Learning with Natural Language Constraints
View PDFAbstract:The role of natural language constraints in Safe Multi-agent Reinforcement Learning (MARL) is crucial, yet often overlooked. While Safe MARL has vast potential, especially in fields like robotics and autonomous vehicles, its full potential is limited by the need to define constraints in pre-designed mathematical terms, which requires extensive domain expertise and reinforcement learning knowledge, hindering its broader adoption. To address this limitation and make Safe MARL more accessible and adaptable, we propose a novel approach named Safe Multi-agent Reinforcement Learning with Natural Language constraints (SMALL). Our method leverages fine-tuned language models to interpret and process free-form textual constraints, converting them into semantic embeddings that capture the essence of prohibited states and behaviours. These embeddings are then integrated into the multi-agent policy learning process, enabling agents to learn policies that minimize constraint violations while optimizing rewards. To evaluate the effectiveness of SMALL, we introduce the LaMaSafe, a multi-task benchmark designed to assess the performance of multiple agents in adhering to natural language constraints. Empirical evaluations across various environments demonstrate that SMALL achieves comparable rewards and significantly fewer constraint violations, highlighting its effectiveness in understanding and enforcing natural language constraints.
Current browse context:
cs.MA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.