Computer Science > Computer Science and Game Theory
[Submitted on 2 Jun 2024]
Title:A memory-based spatial evolutionary game with the dynamic interaction between learners and profiteers
View PDF HTML (experimental)Abstract:Spatial evolutionary games provide a valuable framework for elucidating the emergence and maintenance of cooperative behavior. However, most previous studies assume that individuals are profiteers and neglect to consider the effects of memory. To bridge this gap, in this paper, we propose a memory-based spatial evolutionary game with dynamic interaction between learners and profiteers. Specifically, there are two different categories of individuals in the network, including profiteers and learners with different strategy updating rules. Notably, there is a dynamic interaction between profiteers and learners, i.e., each individual has the transition probability between profiteers and learners, which is portrayed by a Markov process. Besides, the payoff of each individual is not only determined by a single round of the game but also depends on the memory mechanism of the individual. Extensive numerical simulations validate the theoretical analysis and uncover that dynamic interactions between profiteers and learners foster cooperation, memory mechanisms facilitate the emergence of cooperative behaviors among profiteers, and increasing the learning rate of learners promotes a rise in the number of cooperators. In addition, the robustness of the model is verified through simulations across various network sizes. Overall, this work contributes to a deeper understanding of the mechanisms driving the formation and evolution of cooperation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.