Computer Science > Emerging Technologies
[Submitted on 5 Jun 2024]
Title:The Logarithmic Memristor-Based Bayesian Machine
View PDF HTML (experimental)Abstract:The demand for explainable and energy-efficient artificial intelligence (AI) systems for edge computing has led to significant interest in electronic systems dedicated to Bayesian inference. Traditional designs of such systems often rely on stochastic computing, which offers high energy efficiency but suffers from latency issues and struggles with low-probability values. In this paper, we introduce the logarithmic memristor-based Bayesian machine, an innovative design that leverages the unique properties of memristors and logarithmic computing as an alternative to stochastic computing. We present a prototype machine fabricated in a hybrid CMOS/hafnium-oxide memristor process. We validate the versatility and robustness of our system through experimental validation and extensive simulations in two distinct applications: gesture recognition and sleep stage classification. The logarithmic approach simplifies the computational model by converting multiplications into additions and enhances the handling of low-probability events, which are crucial in time-dependent tasks. Our results demonstrate that the logarithmic Bayesian machine achieves superior performance in terms of accuracy and energy efficiency compared to its stochastic counterpart, particularly in scenarios involving complex probabilistic models. This work paves the way for the deployment of advanced AI capabilities in edge devices, where power efficiency and reliability are paramount.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.