Computer Science > Neural and Evolutionary Computing
[Submitted on 13 Jun 2024]
Title:CGP++ : A Modern C++ Implementation of Cartesian Genetic Programming
View PDF HTML (experimental)Abstract:The reference implementation of Cartesian Genetic Programming (CGP) was written in the C programming language. C inherently follows a procedural programming paradigm, which entails challenges in providing a reusable and scalable implementation model for complex structures and methods. Moreover, due to the limiting factors of C, the reference implementation of CGP does not provide a generic framework and is therefore restricted to a set of predefined evaluation types. Besides the reference implementation, we also observe that other existing implementations are limited with respect to the features provided. In this work, we therefore propose the first version of a modern C++ implementation of CGP that pursues object-oriented design and generic programming paradigm to provide an efficient implementation model that can facilitate the discovery of new problem domains and the implementation of complex advanced methods that have been proposed for CGP over time. With the proposal of our new implementation, we aim to generally promote interpretability, accessibility and reproducibility in the field of CGP.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.