Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 13 Jun 2024]
Title:A quantitative explanation of the cyclotron-line variation in accreting magnetic neutron stars of super-critical luminosity
View PDF HTML (experimental)Abstract:Magnetic neutron stars (NSs) often exhibit a cyclotron resonant scattering feature (CRSF) in their X-ray spectra. Cyclotron lines are believed to form in the radiative shock in the accretion column. High-luminosity NSs show a smooth anti-correlation between the cyclotron-line centroid ($E_{CRSF}$) and X-ray luminosity ($L_X$). The observed $E_{CRSF}-L_X$ smooth anti-correlation has been in tension with the theoretically predicted one by the radiative shock model. Since there is no other candidate site for the cyclotron-line formation, we re-examine the predicted rate of change of the cyclotron-line energy with luminosity at the radiative shock, taking a closer look at the Physics involved. We developed a purely analytical model describing the overall dependence of the observed cyclotron energy centroid on the shock front's height, including the relativistic boosting effect due to the mildly relativistic motion of the accreting plasma upstream with respect to the shock's reference frame and the gravitational redshift. We find that the CRSF energy varies with a) the shock height due to the dipolar magnetic field, b) the Doppler boosting between the shock and bulk-motion frames, and c) the gravitational redshift. We show that the relativistic effects noticeably weaken the predicted $E_{CRSF}-L_X$ anti-correlation. We use our model to fit the data of the X-ray source V0332+53 and demonstrate that the model fits the data impressively well, alleviating the tension between observations and theory. The reported $E_{CRSF}-L_X$ weak anti-correlation in the supercritical accretion regime may be explained by the combination of the variation of the magnetic-field strength along the accretion column, the effect of Doppler boosting, and the gravitational redshift. Thus, the actual magnetic field on the NS surface may be a factor of $\sim 2$ larger than the naively inferred value from the observed CRSF.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.