Computer Science > Computer Science and Game Theory
[Submitted on 14 Jun 2024 (v1), last revised 6 Jan 2025 (this version, v2)]
Title:The Cost and Complexity of Minimizing Envy in House Allocation
View PDF HTML (experimental)Abstract:We study almost-envy-freeness in house allocation, where $m$ houses are to be allocated among $n$ agents so that every agent receives exactly one house. An envy-free allocation need not exist, and therefore we may have to settle for relaxations of envy-freeness. But typical relaxations such as envy-free up to one good do not make sense for house allocation, as every agent is required to receive exactly one house. Hence we turn to different aggregate measures of envy as markers of fairness. In particular, we define the amount of envy experienced by an agent $a$ w.r.t. an allocation to be the number of agents that agent $a$ envies under that allocation. We quantify the envy generated by an allocation using three different metrics: 1) the number of agents who are envious; 2) the maximum amount of envy experienced by any agent; and 3) the total amount of envy experienced by all agents, and look for allocations that minimize one of the three metrics. We thus study three computational problems corresponding to each of the three metrics and prove a host of algorithmic and hardness results. We also suggest practical approaches for these problems via integer linear program (ILP) formulations and report the findings of our experimental evaluation of ILPs. Finally, we study the price of fairness (PoF), which quantifies the loss of welfare we must suffer due to the fairness requirements, and we prove a number of results on PoF, including tight bounds as well as algorithms that simultaneously optimize both welfare and fairness.
Submission history
From: Aditi Sethia [view email][v1] Fri, 14 Jun 2024 06:23:59 UTC (78 KB)
[v2] Mon, 6 Jan 2025 07:09:19 UTC (79 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.