Computer Science > Machine Learning
[Submitted on 16 Jun 2024]
Title:Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for space-time solutions of semilinear partial differential equations
View PDFAbstract:It is a challenging topic in applied mathematics to solve high-dimensional nonlinear partial differential equations (PDEs). Standard approximation methods for nonlinear PDEs suffer under the curse of dimensionality (COD) in the sense that the number of computational operations of the approximation method grows at least exponentially in the PDE dimension and with such methods it is essentially impossible to approximately solve high-dimensional PDEs even when the fastest currently available computers are used. However, in the last years great progress has been made in this area of research through suitable deep learning (DL) based methods for PDEs in which deep neural networks (DNNs) are used to approximate solutions of PDEs. Despite the remarkable success of such DL methods in simulations, it remains a fundamental open problem of research to prove (or disprove) that such methods can overcome the COD in the approximation of PDEs. However, there are nowadays several partial error analysis results for DL methods for high-dimensional nonlinear PDEs in the literature which prove that DNNs can overcome the COD in the sense that the number of parameters of the approximating DNN grows at most polynomially in both the reciprocal of the prescribed approximation accuracy $\varepsilon>0$ and the PDE dimension $d\in\mathbb{N}$. In the main result of this article we prove that for all $T,p\in(0,\infty)$ it holds that solutions $u_d\colon[0,T]\times\mathbb{R}^d\to\mathbb{R}$, $d\in\mathbb{N}$, of semilinear heat equations with Lipschitz continuous nonlinearities can be approximated in the $L^p$-sense on space-time regions without the COD by DNNs with the rectified linear unit (ReLU), the leaky ReLU, or the softplus activation function. In previous articles similar results have been established not for space-time regions but for the solutions $u_d(T,\cdot)$, $d\in\mathbb{N}$, at the terminal time $T$.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.