Computer Science > Computation and Language
[Submitted on 17 Jun 2024 (v1), last revised 4 Oct 2024 (this version, v2)]
Title:Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces
View PDF HTML (experimental)Abstract:The task of "unlearning" certain concepts in large language models (LLMs) has attracted immense attention recently, due to its importance in mitigating undesirable model behaviours, such as the generation of harmful, private, or incorrect information. Current protocols to evaluate unlearning methods largely rely on behavioral tests, without monitoring the presence of unlearned knowledge within the model's parameters. This residual knowledge can be adversarially exploited to recover the erased information post-unlearning. We argue that unlearning should also be evaluated internally, by considering changes in the parametric knowledge traces of the unlearned concepts. To this end, we propose a general evaluation methodology that leverages vocabulary projections to inspect concepts encoded in model parameters. We use this approach to localize "concept vectors" - parameter vectors that encode concrete concepts - and construct ConceptVectors, a benchmark dataset containing hundreds of common concepts and their parametric knowledge traces within two open-source LLMs. Evaluation on ConceptVectors shows that existing unlearning methods minimally impact concept vectors and mostly suppress them during inference, while directly ablating these vectors demonstrably removes the associated knowledge and significantly reduces the model's susceptibility to adversarial manipulation. Our results highlight limitations in behavioral-based unlearning evaluations and call for future work to include parameter-based evaluations. To support this, we release our code and benchmark at this https URL.
Submission history
From: Yihuai Hong [view email][v1] Mon, 17 Jun 2024 15:00:35 UTC (439 KB)
[v2] Fri, 4 Oct 2024 11:46:20 UTC (491 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.