Computer Science > Cryptography and Security
[Submitted on 17 Jun 2024 (v1), last revised 8 Jul 2024 (this version, v2)]
Title:P3GNN: A Privacy-Preserving Provenance Graph-Based Model for APT Detection in Software Defined Networking
View PDF HTML (experimental)Abstract:Software Defined Networking (SDN) has brought significant advancements in network management and programmability. However, this evolution has also heightened vulnerability to Advanced Persistent Threats (APTs), sophisticated and stealthy cyberattacks that traditional detection methods often fail to counter, especially in the face of zero-day exploits. A prevalent issue is the inadequacy of existing strategies to detect novel threats while addressing data privacy concerns in collaborative learning scenarios. This paper presents P3GNN (privacy-preserving provenance graph-based graph neural network model), a novel model that synergizes Federated Learning (FL) with Graph Convolutional Networks (GCN) for effective APT detection in SDN environments. P3GNN utilizes unsupervised learning to analyze operational patterns within provenance graphs, identifying deviations indicative of security breaches. Its core feature is the integration of FL with homomorphic encryption, which fortifies data confidentiality and gradient integrity during collaborative learning. This approach addresses the critical challenge of data privacy in shared learning contexts. Key innovations of P3GNN include its ability to detect anomalies at the node level within provenance graphs, offering a detailed view of attack trajectories and enhancing security analysis. Furthermore, the models unsupervised learning capability enables it to identify zero-day attacks by learning standard operational patterns. Empirical evaluation using the DARPA TCE3 dataset demonstrates P3GNNs exceptional performance, achieving an accuracy of 0.93 and a low false positive rate of 0.06.
Submission history
From: Hedyeh Nazari [view email][v1] Mon, 17 Jun 2024 18:14:03 UTC (10,267 KB)
[v2] Mon, 8 Jul 2024 19:50:26 UTC (10,169 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.