Computer Science > Machine Learning
[Submitted on 19 Jun 2024 (v1), last revised 14 Oct 2024 (this version, v3)]
Title:Infinite-Horizon Reinforcement Learning with Multinomial Logistic Function Approximation
View PDFAbstract:We study model-based reinforcement learning with non-linear function approximation where the transition function of the underlying Markov decision process (MDP) is given by a multinomial logistic (MNL) model. We develop a provably efficient discounted value iteration-based algorithm that works for both infinite-horizon average-reward and discounted-reward settings. For average-reward communicating MDPs, the algorithm guarantees a regret upper bound of $\tilde{\mathcal{O}}(dD\sqrt{T})$ where $d$ is the dimension of feature mapping, $D$ is the diameter of the underlying MDP, and $T$ is the horizon. For discounted-reward MDPs, our algorithm achieves $\tilde{\mathcal{O}}(d(1-\gamma)^{-2}\sqrt{T})$ regret where $\gamma$ is the discount factor. Then we complement these upper bounds by providing several regret lower bounds. We prove a lower bound of $\Omega(d\sqrt{DT})$ for learning communicating MDPs of diameter $D$ and a lower bound of $\Omega(d(1-\gamma)^{3/2}\sqrt{T})$ for learning discounted-reward MDPs with discount factor $\gamma$. Lastly, we show a regret lower bound of $\Omega(dH^{3/2}\sqrt{K})$ for learning $H$-horizon episodic MDPs with MNL function approximation where $K$ is the number of episodes, which improves upon the best-known lower bound for the finite-horizon setting.
Submission history
From: Dabeen Lee [view email][v1] Wed, 19 Jun 2024 15:29:14 UTC (41 KB)
[v2] Sat, 21 Sep 2024 14:46:00 UTC (49 KB)
[v3] Mon, 14 Oct 2024 00:37:51 UTC (61 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.