Computer Science > Software Engineering
[Submitted on 28 Jun 2024]
Title:An Analysis of MLOps Architectures: A Systematic Mapping Study
View PDF HTML (experimental)Abstract:Context. Despite the increasing adoption of Machine Learning Operations (MLOps), teams still encounter challenges in effectively applying this paradigm to their specific projects. While there is a large variety of available tools usable for MLOps, there is simultaneously a lack of consolidated architecture knowledge that can inform the architecture design. Objective. Our primary objective is to provide a comprehensive overview of (i) how MLOps architectures are defined across the literature and (ii) which tools are mentioned to support the implementation of each architecture component. Method. We apply the Systematic Mapping Study method and select 43 primary studies via automatic, manual, and snowballing-based search and selection procedures. Subsequently, we use card sorting to synthesize the results. Results. We contribute (i) a categorization of 35 MLOps architecture components, (ii) a description of several MLOps architecture variants, and (iii) a systematic map between the identified components and the existing MLOps tools. Conclusion. This study provides an overview of the state of the art in MLOps from an architectural perspective. Researchers and practitioners can use our findings to inform the architecture design of their MLOps systems.
Submission history
From: Faezeh Amou Najafabadi [view email][v1] Fri, 28 Jun 2024 11:38:50 UTC (207 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.