Computer Science > Computers and Society
[Submitted on 2 Jul 2024 (v1), last revised 14 Oct 2024 (this version, v3)]
Title:Uplifting Lower-Income Data: Strategies for Socioeconomic Perspective Shifts in Large Multi-modal Models
View PDF HTML (experimental)Abstract:Recent work has demonstrated that the unequal representation of cultures and socioeconomic groups in training data leads to biased Large Multi-modal (LMM) models. To improve LMM model performance on underrepresented data, we propose and evaluate several prompting strategies using non-English, geographic, and socioeconomic attributes. We show that these geographic and socioeconomic integrated prompts favor retrieving topic appearances commonly found in data from low-income households across different countries leading to improved LMM model performance on lower-income data. Our analyses identify and highlight contexts where these strategies yield the most improvements.
Submission history
From: Joan Nwatu [view email][v1] Tue, 2 Jul 2024 19:27:00 UTC (8,249 KB)
[v2] Mon, 8 Jul 2024 13:09:39 UTC (8,249 KB)
[v3] Mon, 14 Oct 2024 14:11:42 UTC (8,128 KB)
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.