Computer Science > Software Engineering
[Submitted on 4 Jul 2024 (v1), last revised 10 Feb 2025 (this version, v2)]
Title:ALPINE: An adaptive language-agnostic pruning method for language models for code
View PDF HTML (experimental)Abstract:Language models of code have demonstrated state-of-the-art performance across various software engineering and source code analysis tasks. However, their demanding computational resource requirements and consequential environmental footprint remain as significant challenges. This work introduces ALPINE, an adaptive programming language-agnostic pruning technique designed to substantially reduce these models' computational overhead. The proposed method offers a pluggable layer that can be integrated with all Transformer-based models. With ALPINE, input sequences undergo adaptive compression throughout the pipeline, reaching a size up to $\times 3$ less their initial size, resulting in significantly reduced computational load. Our experiments on two software engineering tasks, defect prediction and code clone detection across three language models CodeBERT, GraphCodeBERT and UniXCoder show that ALPINE achieves up to a 50% reduction in FLOPs, a 58.1% decrease in memory footprint, and a 28.1% improvement in throughput on average. This led to a reduction in CO2 by up to $44.85$%. Importantly, it achieves the reduction in computation resources while maintaining up to 98.1% of the original predictive performance. These findings highlight the potential of ALPINE in making language models of code more resource-efficient and accessible while preserving their performance, contributing to the overall sustainability of adopting language models in software development. Also, it sheds light on redundant and noisy information in source code analysis corpora, as shown by the substantial sequence compression achieved by ALPINE.
Submission history
From: Mootez Saad [view email][v1] Thu, 4 Jul 2024 20:42:51 UTC (311 KB)
[v2] Mon, 10 Feb 2025 21:18:04 UTC (705 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.