Quantitative Biology > Neurons and Cognition
[Submitted on 10 Jun 2024]
Title:Higher-Order Spatial Information for Self-Supervised Place Cell Learning
View PDF HTML (experimental)Abstract:Mammals navigate novel environments and exhibit resilience to sparse environmental sensory cues via place and grid cells, which encode position in space. While the efficiency of grid cell coding has been extensively studied, the computational role of place cells is less well understood. This gap arises partially because spatial information measures have, until now, been limited to single place cells. We derive and implement a higher-order spatial information measure, allowing for the study of the emergence of multiple place cells in a self-supervised manner. We show that emergent place cells have many desirable features, including high-accuracy spatial decoding. This is the first work in which higher-order spatial information measures that depend solely on place cells' firing rates have been derived and which focuses on the emergence of multiple place cells via self-supervised learning. By quantifying the spatial information of multiple place cells, we enhance our understanding of place cell formation and capabilities in recurrent neural networks, thereby improving the potential navigation capabilities of artificial systems in novel environments without objective location information.
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.