Computer Science > Artificial Intelligence
[Submitted on 11 Jul 2024 (v1), last revised 10 Sep 2024 (this version, v2)]
Title:Toward accessible comics for blind and low vision readers
View PDFAbstract:This work explores how to fine-tune large language models using prompt engineering techniques with contextual information for generating an accurate text description of the full story, ready to be forwarded to off-the-shelve speech synthesis tools. We propose to use existing computer vision and optical character recognition techniques to build a grounded context from the comic strip image content, such as panels, characters, text, reading order and the association of bubbles and characters. Then we infer character identification and generate comic book script with context-aware panel description including character's appearance, posture, mood, dialogues etc. We believe that such enriched content description can be easily used to produce audiobook and eBook with various voices for characters, captions and playing sound effects.
Submission history
From: Christophe Rigaud [view email] [via CCSD proxy][v1] Thu, 11 Jul 2024 07:50:25 UTC (1,182 KB)
[v2] Tue, 10 Sep 2024 07:59:21 UTC (2,618 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.