Astrophysics > Earth and Planetary Astrophysics
[Submitted on 11 Jul 2024 (v1), last revised 4 Nov 2024 (this version, v2)]
Title:Enhancing 3D Planetary Atmosphere Simulations with a Surrogate Radiative Transfer Model
View PDF HTML (experimental)Abstract:This work introduces an approach to enhancing the computational efficiency of 3D atmospheric simulations by integrating a machine-learned surrogate model into the OASIS global circulation model (GCM). Traditional GCMs, which are based on repeatedly numerically integrating physical equations governing atmospheric processes across a series of time-steps, are time-intensive, leading to compromises in spatial and temporal resolution of simulations. This research improves upon this limitation, enabling higher resolution simulations within practical timeframes. Speeding up 3D simulations holds significant implications in multiple domains. Firstly, it facilitates the integration of 3D models into exoplanet inference pipelines, allowing for robust characterisation of exoplanets from a previously unseen wealth of data anticipated from JWST and post-JWST instruments. Secondly, acceleration of 3D models will enable higher resolution atmospheric simulations of Earth and Solar System planets, enabling more detailed insights into their atmospheric physics and chemistry. Our method replaces the radiative transfer module in OASIS with a recurrent neural network-based model trained on simulation inputs and outputs. Radiative transfer is typically one of the slowest components of a GCM, thus providing the largest scope for overall model speed-up. The surrogate model was trained and tested on the specific test case of the Venusian atmosphere, to benchmark the utility of this approach in the case of non-terrestrial atmospheres. This approach yields promising results, with the surrogate-integrated GCM demonstrating above 99.0% accuracy and 147 factor GPU speed-up of the entire simulation compared to using the matched original GCM under Venus-like conditions.
Submission history
From: Tara Tahseen [view email][v1] Thu, 11 Jul 2024 14:39:59 UTC (3,575 KB)
[v2] Mon, 4 Nov 2024 16:12:37 UTC (3,735 KB)
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.