Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Jul 2024]
Title:FabGPT: An Efficient Large Multimodal Model for Complex Wafer Defect Knowledge Queries
View PDF HTML (experimental)Abstract:Intelligence is key to advancing integrated circuit (IC) fabrication. Recent breakthroughs in Large Multimodal Models (LMMs) have unlocked unparalleled abilities in understanding images and text, fostering intelligent fabrication. Leveraging the power of LMMs, we introduce FabGPT, a customized IC fabrication large multimodal model for wafer defect knowledge query. FabGPT manifests expertise in conducting defect detection in Scanning Electron Microscope (SEM) images, performing root cause analysis, and providing expert question-answering (Q&A) on fabrication processes. FabGPT matches enhanced multimodal features to automatically detect minute defects under complex wafer backgrounds and reduce the subjectivity of manual threshold settings. Besides, the proposed modulation module and interactive corpus training strategy embed wafer defect knowledge into the pre-trained model, effectively balancing Q&A queries related to defect knowledge and original knowledge and mitigating the modality bias issues. Experiments on in-house fab data (SEM-WaD) show that our FabGPT achieves significant performance improvement in wafer defect detection and knowledge querying.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.