Computer Science > Human-Computer Interaction
[Submitted on 3 Jun 2024]
Title:Generative AI as a Learning Buddy and Teaching Assistant: Pre-service Teachers' Uses and Attitudes
View PDF HTML (experimental)Abstract:To uncover pre-service teachers' (PSTs') user experience and perceptions of generative artificial intelligence (GenAI) applications, we surveyed 167 Ghana PSTs' specific uses of GenAI as a learning buddy and teaching assistant, and their attitudes towards these applications. Employing exploratory factor analysis (EFA), we identified three key factors shaping PSTs' attitudes towards GenAI: teaching, learning, and ethical and advocacy factors. The mean scores of these factors revealed a generally positive attitude towards GenAI, indicating high levels of agreement on its potential to enhance PSTs' content knowledge and access to learning and teaching resources, thereby reducing their need for assistance from colleagues. Specifically, PSTs use GenAI as a learning buddy to access reading materials, in-depth content explanations, and practical examples, and as a teaching assistant to enhance teaching resources, develop assessment strategies, and plan lessons. A regression analysis showed that background factors such as age, gender, and year of study do not predict PSTs' attitudes towards GenAI, but age and year of study significantly predict the frequency of their use of GenAI, while gender does not. These findings suggest that older PSTs and those further along in their teacher education programs may use GenAI more frequently, but their perceptions of the application remain unchanged. However, PSTs expressed concerns about the accuracy and trustworthiness of the information provided by GenAI applications. We, therefore, suggest addressing these concerns to ensure PSTs can confidently rely on these applications in their teacher preparation programs. Additionally, we recommend targeted strategies to integrate GenAI more effectively into both learning and teaching processes for PSTs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.